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Abstract. In many types of clouds, multiple hydrometeor populations can be present at the same time and height. Studying the

evolution of these different hydrometeors in a time-height perspective can give valuable information on cloud particle compo-

sition and microphysical growth processes. However, as a prerequisite, the number of different hydrometeor types in a certain

cloud volume needs to be quantified. This can be accomplished using cloud radar Doppler velocity spectra from profiling

cloud radars if the different hydrometeor types have sufficiently different terminal fall velocities to produce individual Doppler5

spectrum peaks. Here we present a newly developed supervised machine learning radar Doppler spectra peak finding algorithm

(named PEAKO). In this approach, three adjustable parameters (spectrum smoothing span, prominence threshold, and mini-

mum peak width at half-height) are varied to obtain the set of parameters which yields the best agreement of user-classified

and machine-marked peaks. The algorithm was developed for Ka-band ARM Zenith-pointing Radar (KAZR) observations

obtained in thick snow fall systems during the Atmospheric Radiation Measurement Program’s (ARM) mobile facility AMF210

deployment at Hyytiälä, Finland, during the Biogenic Aerosols – Effects on Clouds and Climate (BAECC) field campaign. The

performance of PEAKO is evaluated by comparing its results to existing Doppler peak finding algorithms. The new algorithm

is found to perform well. Its advantage is that the detected features are less noisy and more consistent in time and height than

the peak finding results of other algorithms. In the future, the PEAKO algorithm will be adapted to other cloud radars and other

types of clouds consisting of multiple hydrometeors in the same cloud volume.15

1 Introduction

Determining cloud composition in terms of hydrometeor populations is a non-trivial task in thick cold precipitating clouds

below 0◦C. In these clouds, supercooled liquid water droplets and solid ice crystals of a variety of shapes and sizes can coexist

at temperatures between -40◦C and 0◦C. Mixed-phase clouds and thick cold precipitating cloud systems play an important role

in the Earth’s climate, due to their strong influence on the radiative budget (Tan et al., 2016). Global climate models (GCM) still20

have problems in representing mixed-phase clouds, and especially the supercooled liquid fraction (SLF) accurately (Komurcu

et al., 2014).

This motivates the need for highly time- and range-resolved observations of the occurrence of different hydrometeor pop-

ulations and of cloud phase in the vertical column. The first step towards this characterization of hydrometeor types is the

determination of the number of different populations within a certain cloud volume. Profiling cloud Doppler radars are well25

suited for this task for two reasons:

(i) They are able to penetrate the complete atmospheric column (except for strongly precipitating deep convective clouds), i.e.

also beyond the range where lidar is fully attenuated, and

(ii) they can be used as a stand-alone means of inferring the number of different hydrometeor populations and in certain cir-

cumstances even cloud phase, because different ice particle populations (and sometimes liquid cloud droplets) and ice particles,30

which are present simultaneously within a radar sampling volume, are characterized by different terminal fall velocities due to

their different particle size distributions and densities.

Each of these different particle size distributions thus generates a peak in the radar Doppler velocity spectrum (Kollias et al.,
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2016). However, sub-volume turbulence broadens the cloud Doppler spectra peaks and thus smears/smoothes the microphysical

signature. Using narrow-beam width antennas and optimizing observational strategies with short dwell time and high vertical

resolution reduces turbulence-induced spectrum broadening (Kollias et al., 2016). However, the observed Doppler spectrum is

always a convolution of microphysical and dynamical effects.

In order to infer microphysical properties from the radar Doppler spectrum, the peaks have to be separated. Since spectra5

can be noisy and peaks can be merged, this is a non-trivial task, which has already been approached in multiple ways in the

past for different cloud types: Shupe et al. (2004) were able to separate observed Doppler velocity spectra into a liquid and

an ice spectral mode for a 30-minute long altostratus case study. They empirically defined criteria, which were applied by an

algorithm to distinguish multiple peaks in the radar Doppler spectra.

The Microscale Active Remote Sensing of Clouds (MicroARSCL) data product (Kollias et al., 2007; Luke et al., 2008)10

is generated by a post-processing routine applied to Doppler spectra recorded by the U.S. Department of Energy (DOE)’s

Atmospheric Radiation Measurement (ARM) Program millimeter wavelength cloud radars. It uses the morphology of the

Doppler spectrum to determine shape parameters like skewness and kurtosis for both the primary peak (highest reflectivity)

and, if applicable, an additional noise-separated secondary peak (of lower reflectivity). The peak power densities and modal

velocities of up to two local maxima (sub-peaks) located within the primary peak are also included. The MicroARSCL product15

has e.g. been used by Riihimaki et al. (2016) and Oue et al. (2018). The former used it to infer hydrometeor phase in a

tropical deep convective system, the latter to study hydrometeor populations in deep precipitating systems in the Arctic. Oue

et al. (2018) found multimodal Doppler spectra in the dendritic/planar growth layer as well as in mixed-phase layers. They

also highlighted the added value of joint analysis of Doppler spectra and polarimetric variables from scanning cloud radar

observations for snow microphysical studies.20

Verlinde et al. (2013) were able to separate four hydrometeor populations (background ice, cloud, drizzle and new ice) using

continuity of spectral modes in time and height in an Arctic cloud case study, in combination with high spectral resolution lidar

(HSRL) and in-situ observations.

Kalesse et al. (2016) presented a case study of the BAECC field campaign, in which frontal snow was falling through a

supercooled liquid water layer (SWL), which lead to riming of the snow flakes. They could distinguish up to three noise-floor25

separated peaks in the recorded radar Doppler spectra, which were then used to track microphysical processes along slanted

fall streaks. However, it is stressed that this case was special due to the separation of the peaks by the noise-floor. Usually,

merged peaks are observed, motivating the need for the development of robust cloud radar Doppler spectrum peak separation

techniques.

Williams et al. (2018) identify multiple Doppler peaks using the depth of the local minimum between main peak and sub-30

peak as separation criteria for KAZR observations of liquid-only and mixed-phase clouds at Oliktok Point, Alaska.

All these efforts, using in part considerably differing approaches, show that there is a need to correctly separate multiple

merged peaks in Doppler spectra to aid microphysical understanding of mixed phase cloud processes as well as to improve

hydrometeor classification techniques. At the same time, recent studies highlight the role of machine learning as a tool for

hydrometeor classification based on remote sensing data e.g., Besic et al. (2016); Praz et al. (2017).35
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2 Data set description

The Biogenic Aerosols-Effects on Clouds and Climate (BAECC; Petäjä et al., 2016) campaign took place at the Station for

Measuring Ecosystem-Atmosphere Relations II (SMEARII) in Hyytiälä, Finland (61◦51′N, 24◦17′E, 150 m above sea level).

The ARM Program deployed their Second ARM Mobile Facility (AMF2) from February to September 2014. Within this frame,

a snowfall experiment (BAECC SNEX) took place as a collaborative effort between DOE ARM, University of Helsinki, the5

Finnish Meteorological Institute (FMI), the National Aeronautics and Space Administration (NASA) and Colorado State Uni-

versity. An intensive operation period (IOP) from 1 February to 30 April 2014 was aimed at measuring snowfall microphysics

using a comprehensive suite of remote sensing instruments, complemented by surface-based precipitation observations.

The AMF is constituted of several ground-based remote sensing instruments, including among other things a 35 GHz Ka-band

ARM Zenith-pointing Radar (KAZR), as well as a W-, Ka-, and X-band Scanning ARM Cloud Radar (Kollias et al., 2014), a10

High Spectral Resolution Lidar (HSRL) and a micropulse lidar (MPL). Supplementing these measurements, radiosondes were

launched four times daily. This study will focus on the Doppler spectra recorded by the KAZR as main data basis, and will

utilize other observations (ground-based in-situ, HSRL - if applicable) for comparison and validation purposes. The KAZR was

operated with a temporal resolution of 2 s, a vertical range gate spacing of 30 m, and a Doppler velocity spectrum resolution

(bin width) of 2.37 cm s−1.15

3 Methodology

3.1 PEAKO algorithm description

In this study, a supervised Doppler spectra peak finding algorithm (in the following text referred to as PEAKO) was developed,

which is trained via hand-marked Doppler peaks as input. The learning process is split into two phases, the training phase and

the test phase, respectively. For that purpose, three data sets, each containing example input and the corresponding desired20

output, are created:

– a first training data set, used to obtain an initial model

– a second training data set, about half as large as the first training data set, used to tune the model

– a testing data set, which has approximately the same size as the second training data set and is used for model evaluation

With the help of a graphical Matlab interface, in which the currently to-be-marked Doppler spectrum and its surrounding25

neighbors (in time and height) are displayed in logarithmic space (see Fig. 1), pronounced Doppler spectrum peaks are hand-

marked by an experienced user. Even though this approach is subjective, criteria such as peak width, dynamic range, i.e. the

height above noise floor, skewness of the spectrum and consistency of the feature (peak) in time-height are taken into account.

The locations of these hand-marked peaks (in mean Doppler velocity (VD) units [m s−1]), as well as their corresponding signal

powers (in dBZ) are then saved as data matrices.30
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Figure 1. Example of graphical user interface for peak-marking by hand. For the Doppler spectrum in the center, two peaks (red stars) were

marked by the user (HK). The surrounding spectra display the neighboring spectra. Data: random spectra of KAZR observed at TMP on

February 16, 2014, 0.03-0.05 UTC between 1-1.2 km height. The red line marks the maximum noise floor, the black line the mean spectral

noise, determined according to Hildebrand and Sekhon (1974).

The training and test data sets were chosen as individual non-overlapping time-height areas rather than randomly splitting

all hand-marked spectra into training and test categories. For the training phase, data recorded on 21 February 21 2014, 22-

23 UTC were utilized, a time period, which was studied in greater detail before (Kalesse et al., 2016; Mason et al., 2018).

Data from 16 February 2014, 0-1 UTC, which were in part investigated in a case study presented in Kneifel et al. (2015), are

used in the training phase as well. The third case selected for the training data set, 21 February 2014, 23-24 UTC, was in part5

analyzed by Kneifel et al. (2015) as well. The test set is comprised of two 1-hour-cases, which were recorded on 2 February

2014, 16-17 UTC, and on 7 February 2014, 23-24 UTC, respectively. In the case of 2 February 2014, 16-17 UTC, the study area

was set within the lowest liquid layer where independent lidar (HSRL) measurements can be used to check the performance of

the PEAKO algorithm for liquid-peak detection. Unfortunately, the HSRL was fully attenuated by near-surface liquid-layers

during the other case studies. The chosen period on 7 February 2014 overlaps with another case investigated by Kneifel et al.10

(2015). Table 1 gives a summary which measurement periods were used for which of the data sets.

The PEAKO algorithm includes a set of three subsequently described adjustable parameters (smoothing span, prominence

threshold, minimum peak width at half-height), which are varied to obtain the set of parameters which yields the best agree-

ment of hand-marked and machine-marked peaks. The search for the best parameter combination is done via search through a

finite set of values for the three-dimensional search space.15
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Table 1. Overview of the measurement periods used in training and test data sets containing hand-marked peaks. Published studies of the

selected periods, to which results can be compared, are noted as well.

training set test set

2014-02-02

16 - 17 UTC

X

(comparison to HSRL)

2014-02-07

23-24 UTC

X

Kneifel et al. (2015)

2014-02-16

0-1 UTC

X

Kneifel et al. (2015)

2014-02-21

22-23 UTC

X

Kalesse et al. (2016)

2014-02-21

23-24 UTC

X

Kneifel et al. (2015)

The span for smoothing defines the fraction of the total number of data points (here: Doppler bins) of one Doppler velocity

spectrum to be considered for spectral smoothing. Spectral smoothing is performed using local regression using weighted

linear least squares and a 2nd degree polynomial model (loess). This smoothing method was chosen empirically after testing

different methods since it showed the most promising results. The span is varied in a range between 3.5% and 13%, regularly

spaced with a distance of 0.5%. Spectral smoothing is performed on an average of 16 s temporal and 90 m spatial dimension,5

i.e. for the given KAZR time-height resolution of 2 s (time) and 30 m (range), the mean of 4 neighbors in time and 2 neighbors

in height-dimension was made before the machine-based peak finding was applied to smooth out some spurious features in in-

dividual Doppler spectra. With hydrometeor populations usually appearing in distinct layers which are persistent over a certain

period of time, more neighbors in time than height are used for averaging.

The prominence threshold is a measure of how much a peak stands out relative to the other peaks in the considered Doppler10

spectrum. The prominence of a peak is the power difference (dynamic range) of the peak’s maximum and the signal’s minimum

between the considered peak and the nearest higher peak. Concerning the highest peak of the Doppler spectrum, the prominence

is the power difference between the peak maximum and the noise floor. This parameter is varied between 0 and 2 dBZ m−1 s−1

in the training phase of PEAKO. Fig. 2 illustrates the definition of the peak prominence: A spectrum with three merged peaks is

shown and their prominences are drawn as red vertical lines. In the case of the rightmost peak (VD ≈−0.5 m s−1), the promi-15

nence is defined as the power difference between the peak’s maximum and the minimum between this peak and the nearest

higher peak. This minimum is located approximately at the leftmost peak’s right edge (marked with a solid black vertical line

at around −1.1 m s−1). For the peak with the lowest power at VD ≈−0.8 m s−1, the prominence of 0.25 dBZ m s−1 is barely

visible because it is defined as only the distance between this peak’s maximum and the minimum to the closest higher peak,

which is the peak with the lowest absolute VD.20

The third adjustable parameter is the minimum peak width at half-height. The range of values in which it is varied (4.2 to 8.4
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Figure 2. Example spectrum with multiple merged peaks, recorded on 21 February 21 2014, 22.7 UTC in 2.44 km altitude. The smoothed

spectrum (average of neighbor spectra in time and height domain, smoothed using a span of 8.5%) is shown as well (bold black line). For

each of the three peaks marked in this spectrum (blue dots), the prominences (red dashed lines) and widths at half height (blue dashed lines),

as well as the edges (vertical black lines) of the peaks are marked.

Doppler velocity bins, spaced with a distance of 1.05) was determined from a low-turbulence cloud region only consisting of

liquid droplets (21 February 2014, 22.53 - 22.59 UTC 2.9-3.1 km). Doppler spectra peaks in low-turbulent liquid cloud droplet

layers are very narrow and thus suited to determine the minimum width of a peak considered as physically meaningful. At

the given KAZR resolution, these peaks were found to be between 4.2 and 8.4 VD bins wide corresponding to about 10 -

20 cm s−1.5

To determine the optimal parameter combination, a similarity measure is defined, based on the maximum overlapping area

of detected peaks as illustrated in Fig 3: For a certain set of smoothing span, minimum peak width and prominence threshold,

the algorithm will detect certain peaks in a Doppler spectrum (shown as red circles in Fig. 3). For these peaks, as well as

for the peaks marked by a user in the same Doppler spectrum (red stars in Fig. 3), the edges (marked with vertical lines) are

determined, which are defined as follows: The edge is either the first Doppler bin, where the spectrum power is smaller than10

the maximum noise floor, or, in case of a merged peak, the minimum (saddle point) between the merged peaks. In the next

step, the overlapping area for each pair of hand-marked and machine-found peaks is identified: In case of multiple peaks in one

spectrum, the sum of all overlapping areas is determined. Non-overlapping regions caused either by a mismatch in the number

of hand-marked and machine-found peaks or by a different location (in x-direction, i.e., in Doppler velocity) of the pair of

peaks, are penalized in the similarity area measure by subtracting the non-overlapping area (marked red hatched in Fig. 3) of15
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Figure 3. Schematic to visualize how the similarity measure to compare user-marked and algorithm-found peaks in Doppler spectra: Areas

of matching peaks are summed up (blue hatched area), and the areas of mismatched peaks (red hatched) are subtracted.

the mismatched peaks. The optimum parameter combination is the triplet of span, prominence threshold and minimum peak

width, for which the similarity has its maximum value.

3.2 Description of other radar Doppler spectra peak-finding algorithms

Three other radar Doppler velocity spectrum peak finding algorithms were compared to PEAKO and will be briefly explained5

in the following.

The algorithm described in Shupe et al. (2004) (from now on referred to as “Shupe_04”) uses peak finding criteria optimized

to one relatively short (30 min) mixed-phase cloud case study period. In short, the power of the primary (strongest) peak must

be at least 4 standard deviations of the noise above the mean spectral noise level. In addition, one or more secondary peaks are

identified as maxima being at least 2.5 standard deviations of the noise greater than the mean spectral noise level. Both primary10

and secondary peaks must have a width of at least 0.448 m s−1. Merged peaks are identified as separate spectral modes if the

saddle point between the two maxima is lower than 65% of the lowest of the two peaks from the noise level.

The MicroARSCL data product (Kollias et al., 2007; Luke et al., 2008) decomposes noise floor subtracted and 3-bin-boxcar-

filtered radar Doppler spectra into a primary peak (defined as the peak containing the bin with maximum spectral power

density), dominating the total reflectivity and containing up to two sub-peaks, and a possible secondary peak. Fixed thresholds,15

i.e. minimum primary or secondary peak width (Pwmin), minimum sub-peak height (Phmin), minimum sub-peak separation

(Psmin), and minimum primary-secondary peak edge separation (Pnmin), are applied to extract a suite of variables from the

Doppler spectra. Pwmin is set to 5 Doppler velocity bins (0.12 m s−1), Psmin to 3 Doppler velocity bins (0.07 m s−1), Pnmin
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is 1 Doppler velocity bin (0.0237 m s−1), and Phmin is 1 dBZ m−1 s−1. For the comparative study, a third technique, being a

polynomial fitting algorithm as described in Kollias et al. (1999) and Kollias et al. (2003) was also applied to the radar Doppler

spectra which are analyzed in this study. This routine first extracts the parts of the spectrum above the maximum noise floor

(signal-to-noise threshold determined by Hildebrand and Sekhon (1974)) and extends the edges of the found peaks down to

the mean noise floor. In a next step, each continuous sample of data above the noise floor is identified as a sub-spectrum.5

Sub-spectra that are classified as being too narrow (with velocity ranges of the peak smaller than 0.2 m s−1) are excluded. For

each of the remaining sub-spectra, polynomial fitting of 12th order is applied. The first and second derivatives are taken to

identify minima and maxima. Peaks are defined as sequences of minimum-maximum-minimum. Peaks having a velocity range

smaller than 0.2 m s−1 are ignored, as well as peaks with an amplitude smaller than 2 dB, with amplitude being defined as the

difference in reflectivity between consecutive minimum and maximum.10

4 Results and Discussion

The following chapter will be structured as follows: In section 4.1, the best parameter values obtained during the training phase

of the PEAKO algorithm are summarized. The peaks detected by one of these best parameter combinations are compared

to peaks found by Shupe_04, the MicroARSCL product and the Polyfit12 in a case study. It should be noted that PEAKO

was trained with a subset of data from the same distribution as this firstly presented case study. This means that PEAKO has15

somewhat of an advantage over the other three algorithms when comparing on the training data set. Section 4.2 summarizes

the testing phase and presents a comparative independent study case, in which PEAKO-found peaks are again compared to

peaks detected by the three other algorithms and validated against HSRL retrievals of liquid water droplets. More case studies

are presented in the Appendices.

4.1 Training phase of the PEAKO algorithm20

The training phase was split into two steps: Initially, peaks marked manually in 1340 Doppler spectra were used for training the

PEAKO algorithm and obtaining an initial model via a coarse parameter search. This initial training resulted in six equally well

performing combinations of span, prominence threshold and width, which all yield the same value of the similarity measure.

A more fine-resolved search for the three parameters was then performed, using 775 Doppler spectra with user-marked peaks.

This second, refined training again resulted in several combinations of minimum peak prominence, minimum peak width,25

and smoothing span yielding the same similarity. Table 2 gives an overview of the possible ranges found for the three PEAKO

parameters after the initial training and the finer-resolved parameter search. The span for loess smoothing became slightly larger

(increased by 0.5 - 1% in absolute terms) and converged to one single possible value (8.5%). The minimum peak prominence

decreased by one third, i.e. from 0.15 dBZm−1s−1 to 0.1 dBZm−1s−1. This prominence threshold is very low compared to

values used by other peak-finding techniques. However, in other approaches, spectra are usually not smoothed and neighbor-30

averaged. Features prominent enough in time and height to be still visible at all after averaging and smoothing are most

probably physical, justifying the low prominence threshold. The possible values for the minimum peak width did not change
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Table 2. Ranges of the parameters yielding the highest similarity measure after the initial and the fine-tuned training using the first and

second training data set, respectively.

optimal parameter range

after initial training

optimal parameter range

after fine-tuned training

span for smoothing 7.5 - 8% 8.5%

peak prominence threshold 0.15 dBZm−1s−1 0.1 dBZm−1s−1

minimum peak width 4.2 - 6.3 VD bins 4 - 6.25 VD bins

(9.95 - 14.93 cm s−1) (9.48 - 14.81 cm s−1)

significantly between the initial and the more refined model and ranges between 0.09 to 0.15 m s−1 (i.e., VD range, from 4 to

6.25 VD bins for the given KAZR Doppler spectra resolution). Doppler spectrum peaks detected by PEAKO configured in one

of these combinations (span = 8.5%; prominence treshold =0.1 dBZm−1s−1; minimum peak width =4 m s−1) are compared to

peaks found by other methods for a study case on 21 February 2014, 22.54 to 22.77 UTC, at 2 to 6 km height. This parameter

set containing the smallest possible minimum peak width was chosen because it is most stringentand thus best suited for the5

detection of narrow supercooled liquid water peaks. The selected period was discussed in detail in Kalesse et al. (2016).

Fig. 4 shows the first three radar moments, i.e. the radar reflectivity factor Ze, the mean Doppler velocity (MDV) and the

Doppler spectrum width σ for the first selected case study, which is set from 21 February 2014, 22.54 UTC to 22.77 UTC in

2 to 6 km height. This time period is characterized by the passage of a warm occlusion in Hyytiälä, Finland, shown by the

continuously lowering frontal snow cloud base characterized by high Ze. A midlevel mixed-phase cloud was present before10

the front approached. It can be identified by its supercooled liquid water (SLW) layer near cloud top between approximately

2.9 and 3.2 km altitude. Before the snow cloud moves in (22.54 to 22.69 UTC), new ice is formed from this SLW layer and

growing in size while sedimenting, leading to a slight increase in Ze, MDV (absolute value) and σ with decreasing altitude.

As the frontal cloud moves in and snow begins to fall through the SLW layer, riming takes place along slanted fall streaks.

A more in-depth analysis of the synoptic situation and the observed microphysical growth processes is given in Kalesse et al.15

(2016). The number of detected peaks for this case study is shown in Fig. 5. All algorithms show a similar general picture

with an increasing number of spectral peaks as the snow front moves in and snow starts falling through the SLW layer of

the midlevel mixed-phase cloud. A closer examination however reveals some differences between the methods: PEAKO and

Shupe_04 algorithm have very similar results except for some areas in the snowfall region where PEAKO detects 3 peaks and

Shupe_04 detects 2 peaks. MicroARSCL generally shows higher variability than the other algorithms, the small areas of higher20

peak number often coincide with increased spectrum width in Fig. 4. Polynomial fitting shows 3 peaks in the area where snow

falls through the top of the SLW layer and is otherwise very similar to PEAKO and Shupe_04. The areas where the different

algorithms show discrepancies are now examined in more detail. For that purpose, contoured frequency by altitude diagrams

(CFAD, Fig. 6) are created to compare the results of the algorithms in a different way. The CFAD shows the number of detected

peaks (abscissa) at different heights (ordinate) as a colored frequency of occurrence for the total case study sample. For all four25

compared algorithms, it is most common that only one peak is detected. This is especially true for higher altitudes within the
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Figure 4. Case study period from 2014-02-21 22.54 UTC to 22.77 UTC in 2 to 6 km height. Top to bottom panels show the radar reflectivity

factor Ze, the mean Doppler velocity (MDV), and the Doppler spectrum width σ of the main peak in the Doppler spectrum.
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Figure 5. Number of Doppler spectrum peaks detected by different algorithms for the selected case study on 2014-02-21 from 22.54 to

22.77 UTC in 2 to 6 km altitude. Top to bottom: Number of peaks found by the PEAKO algorithm for one of the “best parameter” combina-

tions obtained in the training phase of the algorithm; Number of peaks in MicroARSCL data product; Number of peaks detected using the

criteria of Shupe_04; Number of peaks determined by Polyfit12
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Figure 6. Contoured frequency by altitude diagram (CFAD) for the frequency of occurrence of number of detected peaks from different

algorithms for the case study period on 2014-02-21 from 22.54 to 22.77 UTC in 2 to 6 km altitude.

snow front (4 km and above). It is visible that the PEAKO algorithm and the results obtained using the Shupe_04 approach

agree to a large extent. In the polynomial fitting approach, two or three peaks are detected more often, especially in the layer

just above 3 km altitude, where several spectra are classified to contain three peaks. The MicroARSCL data product contains

even more Doppler peaks, often three or more, over the complete altitude range.

In Fig. 7, four exemplary spectra from regions where the algorithms show discrepancies are shown along with the peaks5

detected by each of the four algorithms. The spectrum in Fig. 7a is recorded in 2.83 km height at 22.56 UTC, below the SLW

and before the snow front moves in. As discussed in Kalesse et al. (2016), ice particles which are nucleated in the SLW layer

of the midlevel cloud and growth through water vapor deposition lead to this Gaussian shaped monomodal Doppler peak. The

spectrum is relatively broad (as can also be seen from Fig. 4) and noisy, pointing to turbulence. MicroARSCL is sensitive to

small-scale noise of the original spectrum which the other algorithms are not sensitive to and thus overestimates the number10

of spectral peaks. Fig. 7b shows a spectrum from later on, at 22.7 UTC, in the upper part of the frontal snow cloud in 5.26 km

height. In this time-height region, PEAKO, Shupe_04 and Polyfit12 detect the Gaussian-shaped snow peak, but MicroARSCL

is again sensitive to small-scale fluctuations in the Doppler spectra and finds three peaks. The example in Fig. 7c is taken from
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Figure 7. Four exemplary Doppler spectra picked from the case study on 21 February 2014, 22.54 to 22.77 UTC in 2 to 6 km altitude. The

averaged and smoothed spectrum which is used as input to PEAKO is drawn in bold over the original spectrum. The peaks detected by the

four algorithms are marked. The number of peaks found by each algorithm is noted in parenthesis in each figure legend. Please note the

different y-scales.

3.2 km altitude at 22.7 UTC where snow from the frontal cloud starts to fall through the SLW. All four algorithms are able to

detect the very narrow noise-floor separated peak produced by the supercooled liquid droplets with VD near 0 m s−1. Fig. 7d

shows a spectrum recorded at the same time but below the SLW layer in 2.41 km height, where freshly generated ice (VD =

-0.5 m s−1), unrimed snow (VD = -1 m s−1), and rimed snow ((VD = -1.7 m s−1)) are present. These hydrometeor populations

do not have sufficient differences in terminal fall velocities and thus produce a spectrum with merged peaks. For this example,5

Shupe_04 and Polyfit12 detect the two main maxima (freshly generated ice and rimed snow), whereas MicroARSCL and

PEAKO find three peaks. However, closer examination of the example spectrum shows that the two algorithms each detect an

additional peak in different locations: MicroARSCL finds a sub-peak in the faster falling hydrometeor population (the Gaussian

peak of the rimed snow) while PEAKO detects a sub-peak in the slower-falling mode which exhibits a strong skewness. This

subpeak is most likely caused by snow from the upper layers which remained unrimed as discussed in Kalesse et al. (2016).10
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The results of the PEAKO comparison to the other three peak-finding approaches for the other two training data sets, i.e.,

for 16 February 2014, 0.67 to 0.92 UTC and for 21 February 2014, 23.01 to 23.25 UTC are shown in Appendix A and B. Time-

height plots of peak number are shown in Fig. A2 and B2; CFAD diagrams can be found in Fig. A3 and B3. Both of these time

periods were as well analyzed by Kneifel et al. (2015) in depth, so it was possible to compare the microphysical signatures

reported in this study to the Doppler peaks detected by the four algorithms. For 16 February 2014, 0.67 to 0.92 UTC, Kneifel5

et al. (2015) reported high values of microwave radiometer derived liquid water path of 100 to 500 g m−2 and clear signatures

of large aggregates in the dual-wavelength ratios of Ka-W-band below 2 km as well as in the reflectivity fall streak feature

at 0.85 UTC which were also seen in the X-Ka dual-wavelength ratios around 0.85 UTC. The general structure of the layers

of Doppler peak number detected by PEAKO, Shupe_04 and Polyfit12 again agree to a large extent, whereas MicroARSCL

detects a higher number of peaks in both cases (Fig. A2 and B2). The fall streak feature which exhibits particle size sorting10

was better detected by PEAKO and MicroARSCL than by the other two algorithms. The increase in number of peaks at 0.67 to

0.75 UTC can be explained by the presence of large needle aggregates of sometimes more compact and sometimes very open

structure as explained in (Kneifel et al., 2015) which lead to the interesting multi-modal Doppler spectrum with up to four peaks

as shown in Fig. B4d). Ground-based in-situ observations show that during 0.75 - 0.85 UTC aggregates and rimed particles

with enhanced terminal velocities were present and that the number of large aggregates was further found to decrease while15

number of increasingly rimed aggregates further increased until 1 UTC. Radio sounding observations on 15 February 2014 at

23.2 UTC show a thin layer at 0.8-0.9 km altitude which is subsaturated with respect to ice and liquid and which might explain

the decrease to 1 found Doppler peak at this altitude. For 21 February 2014, 23.01 to 23.25 UTC, Kneifel et al. (2015) report

the transition from a low concentration of strongly rimed particles (lump graupel) to aggregate snowfall with large snowfall

rates and increasing size and number of the aggregates. The fast transition of the snowfall from rimed particles to aggregates20

results in the bimodal Doppler spectra (with two found peaks) at 23 to 23.05 UTC and monomodal spectra afterwards. For

this case study, PEAKO and Shupe_04 and Polyfit12 agree well with the situation described in Kneifel et al. (2015) while

MicroARSCL overestimates the number of peaks especially in the turbulent boundary layer and near 4 km altitude.

4.2 Testing phase of the algorithm

Using the tuned parameter pairs obtained in the training phase, the PEAKO algorithm is again compared to the other three25

algorithms, as well as to data measured by an independent instrument, the HSRL. For this purpose, a case of a frontal passage

associated with snow on 02 February 2014, 16 to 17 UTC was analyzed. During this time, a liquid-topped mixed-phase cloud

with cloud top temperature of (T = -4◦C) and cloud top height of 2.6 km was present (Fig. 9). A deeper precipitating cloud

system with cloud top around 8 km (cloud top temperature of -40◦C) was approaching the TMP site at about 16.27 UTC. The

surface temperature was -5◦C. During the first half of the hour-long case study, the HSRL detected an embedded layer of SLW30

in the mid-level cloud, characterized by high backscatter coefficient values and low depolarisation ratio values (Luke et al.,

2010) in Fig. 8. The SLW layer is located between 0.8 and 1 km height and is slightly lifted as the front is moving in. Its base

and top are traced with dashed lines in Fig. 8. After 16.8 UTC, the microwave radiometer derived LWP decreases from around

300 g m2 to approximately 60 g m2 and the lidar does not detect the cloud base anymore due to the scarcity in small liquid

15
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Figure 8. HSRL measurements from the case study period from 02 February 16 UTC to 17 UTC in 0 to 3 km height. The top panel shows

the attenuated backscatter cross section and the lower panel the circular depolarisation ratio.

droplets to which the lidar is sensitive to and due to the strong snow fall. The strong decrease in LWP is again pointing to

riming, which is substantiated by a closer look at the Doppler spectra (Fig. 12). Analysis of the ground-based in-situ Particle

Imaging Package (PIP) data shows a variety of different precipitating particles during that one hour time period (Annakaisa von

Lerber, personal communication): Around around 16 UTC, oblate particles, possibly needles, and some small needle aggregates

are present. When Ze decreases around 16.3 - 16.55 UTC (Fig. 9), no large particles are present at all, just very small ones,5

maybe single pristine crystals (the resolution of PIP is not good enough to distinguish). At 16.55 - 16.8 UTC when Ze increases

strongly and LWP decreases significantly, the PIP observes a clear change to round, dense, fast falling particles, indicative of

small graupel. Finally, from 16.8 UTC onward, particle sizes at the ground increase, there are more (quite dense) aggregates,

resulting in Ze of up to 10 dBZ.
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Figure 9. Like Fig. 4 but for 02 February 2014, 16.00 to 17.00 UTC in 0 to 2.7 km height.

Fig. 9 shows the first three radar moments (Ze, MDV and σ) of the main peak for the selected case study. The supercooled

liquid layer at the top of the mid-level cloud extends from about 2.1-2.4 km and is characterized by MDV of near 0 m s−1.

Snow fall rate is at first low and increases at about 16.6 UTC (surface meteorological observations, not shown). Pronounced fall

streaks can be seen coinciding with large values of spectrum width, indicating the presence of several hydrometeor populations,

producing Doppler spectra with broad merged peaks. Fig. 10 reveals that the number of peaks detected by the four algorithms5

differ significantly for this case study. Shupe_04 and Polyfit12 again agree to large extents although Shupe_04 does mostly
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Figure 10. Like Fig. 5 but for 02 February 2014, 16 UTC to 17 UTC in 0 to 2.7 km height. Boxes mark the points in time-height where peaks

detected in single spectra are analyzed in greater detail. The dashed lines mark the bottom and top of the SLW layer detected by the HSRL

(Fig. 8)

.
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Figure 11. Like Fig. 6 but for the case study period on 02 February 2014, 16.00 to 17.00 UTC in 0 to 2.7 km altitude.

only detect one peak at 2-2.5 km height before 16.3 UTC and after 16.5 UTC where all other algorithms mostly detect two

peaks. MicroARSCL generally detects a larger number of peaks in the Doppler spectra, PEAKO is in this case more similar to

MicroARSCL than to the other two algorithms and often detects three to four and sometimes even five peaks along certain fall

streaks. However, due to the smoothing performed within PEAKO, the detected features are less noisy and more consistent in

time-and-height than for MicroARSCL.5

Fig. 11 shows CFAD diagrams for each of the four algorithms for the case study on 02 February 2014, 16 to 17 UTC. These

graphs confirm that Polyfit12 and Shupe_04 estimate the number of peaks more conservatively than PEAKO and MicroARSCL.

It is obvious that MicroARSCL often detects three or four peaks in the lowermost radar height bins, which can probably be

attributed to turbulence. The HSRL-detected SLW layer (varying between 0.7 to 1.5 km height) is most obvious in the Shupe_04

and PEAKO CFAD plot, the number of spectra which are assigned two or three peaks is noticeably higher in this altitude range.10

Fig. 12 shows four exemplary Doppler spectra from the case study on 02 February 2014, 16 to 17 UTC. Only PEAKO is

able to detect a narrow peak near 0 m s−1 in all four example spectra. While these peaks can be attributed to SLW in Fig. 12a,

Fig. 12b, and Fig. 12c, it is more likely that this small subpeak in Fig. 12d is caused by small ice ice particles nucleated in

the SLW layer situated slightly above because the HSRL does not detect liquid at 0.7 km altitude around 16.7 UTC. Besides
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the peak near 0 m s−1, all shown spectra are characterized by broad merged snow peaks pointing to snow particles of different

size, shape, and density falling at different terminal velocities. In Fig. 12a, the three merged modes of snow, as well as the

SLW peak are detected by PEAKO and MicroARSCL, while Shupe_04 and Polyfit12 both only detect one maximum. The

spectrum shown in Fig. 12b is near the top of the SLW layer detected by the HSRL. The narrow liquid peak with fall velocity

near 0 m s−1 is only detected by PEAKO and Shupe_04. Both algorithms find two more snow peaks with larger fall velocity.5

These two peaks are also detected by Polyfit12. MicroARSCL detects three peaks as well, however is not able to detect the

liquid peak. Fig. 12c shows a spectrum which was chosen in an area where PEAKO finds five peaks. Again, one of them is a

SLW peak within the SLW layer detected by the HSRL Fig. 10. This peak is also detected by MicroARSCL and Shupe_04 but

not Polyfit12. The four other peaks found by PEAKO are merged snow peaks with different fall velocities which hint to various

degrees of riming that the other algorithms have difficulties to detect. In Fig. 12d, the number of peaks detected by the four10

algorithms differ significantly: The peak with highest reflectivity at around -1.5 m s−1 fall velocity is found by all algorithms.

PEAKO detects two sub-peaks, which are each detected by at least one other algorithm as well. However, none of the other

methods finds both other ice sub-peaks.

In the Appendices A-C three more case studies from the training and test phase are presented. Comparative results of PEAKO

to the other peak finding algorithms are similar to the cases presented here.15

5 Conclusions and Outlook

5.1 Summary of findings and outlook

The presented study focuses on the description of a new supervised cloud radar Doppler velocity spectrum peak-finding algo-

rithm (PEAKO). Its performance was compared to different existing Doppler spectrum peak-finding algorithms. It was found

that the PEAKO algorithm generally agrees well with results from Shupe_04 and a polynomial fitting approach. PEAKO is20

however capable to detect narrower merged peaks with a smaller power contribution than Shupe_04. The polynomial fitting

approach has mostly similar results as Shupe_04 but is not very practical due to its long computation time. The MicroARSCL

product was usually more sensitive to small perturbations in the radar Doppler spectrum and thus often detected a higher num-

ber of peaks than the other three algorithms and produces more "speckled" results. Some areas where peaks are overestimated

by MicroARSCL are in high-turbulent regions with large spectrum width like the turbulent boundary layer while others seem25

more random and not consistent in time and height. Consistency in time and to a lesser extent height is a good indicator of

the performance of a peak-finding algorithm because hydrometeor populations and cloud microphysical processes generally

occur in layers (unless in high turbulent regions). The number of found cloud radar Doppler velocity spectrum peaks within

mixed-phase wintertime snow clouds in Finland where validated with independent ground-based in-situ observations described

in Kneifel et al. (2015) and if available HSRL observations. In upcoming projects, it is planned to test if the found best three-30

parameter pairs of PEAKO can easily be applied to other radar systems (like METEK-MIRA 35GHz radars or RPG 94GHz

FMCW radars) or to which extent further refinement is needed for different radar sampling parameters. Additionally, the effect

of stronger cloud dynamics will be evaluated. Determining the number of different hydrometeor populations in the same radar

20
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Figure 12. Four exemplary Doppler spectra picked from the case study on 02 February 2014, 16 to 17 UTC in 0 to 2.5 km altitude. The

averaged and smoothed spectrum which is used as input to PEAKO is drawn in bold over the original spectrum. The peaks detected by the

four algorithms are marked. The number of peaks found by each algorithm is noted in parenthesis in each figure legend. Mean and maximum

noise floor are presented by black and red horizontal lines, respectively. Please note that the scale of the y axis is different in each plot.

volume based on morphological features of the radar Doppler spectrum as presented in this comparative study is the first step

towards cloud particle classifications which is however not the focus of this paper.

Data availability. All KAZR and HSRL data used in this study are publicly accessible at the ARM data archive: www.archive.arm.gov.
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Appendix A: Case study from 16 February 2014, 0.67 - 0.92 UTC (training data set 2)

The results of the PEAKO comparison to the other three peak-finding approaches for the training data set of 16 February 2014,

0.67 to 0.92 UTC is shown in Appendix. This time period is also analyzed by Kneifel et al. (2015) in depth, so it was possible

to compare the microphysical signatures reported in this study to the Doppler peaks detected by the four algorithms. For 16

February 2014, 0.67 to 0.92 UTC, Kneifel et al. (2015) reported high values of microwave radiometer derived liquid water path5

of 100 to 500 g m−2 and clear signatures of large aggregates in the dual-wavelength ratios of Ka-W-band below 2 km as well

as in the reflectivity fall streak feature at 0.85 UTC which were also seen in the X-Ka dual-wavelength ratios around 0.85 UTC.

The general structure of the layers of Doppler peak number detected by PEAKO, Shupe_04 and Polyfit12 again agree to a

large extent, whereas MicroARSCL detects a higher number of peaks in both cases (Fig. A2 and B2). The fall streak feature

which exhibits particle size sorting was better detected by PEAKO and MicroARSCL than by the other two algorithms. The10

increase in number of peaks at 0.67 to 0.75 UTC can be explained by the presence of large needle aggregates of sometimes

more compact and sometimes very open structure as explained in (Kneifel et al., 2015) which lead to the interesting multi-

modal Doppler spectrum with up to four peaks as shown in Fig. B4d). Ground-based in-situ observations show that during

0.75 - 0.85 UTC aggregates and rimed particles with enhanced terminal velocities were present and that the number of large

aggregates was further found to decrease while number of increasingly rimed aggregates further increased until 1 UTC. Radio15

sounding observations on 15 February 2014 at 23.2 UTC show a thin layer at 0.8-0.9 km altitude which is subsaturated with

respect to ice and liquid and which might explain the decrease to 1 found Doppler peak at this altitude.

Appendix B: Case study from 21 February 2014, 23.01 - 23.10 UTC (training data set 3)

The training data set of 21 February 2014, 23.01 to 23.25 UTC which is also a case study of Kneifel et al. (2015) is described

in Appendix B. For 23.01 to 23.25 UTC, Kneifel et al. (2015) report the transition from a low concentration of strongly rimed20

particles (lump graupel) to aggregate snowfall with large snowfall rates and increasing size and number of the aggregates. The

fast transition of the snowfall from rimed particles to aggregates results in the bimodal Doppler spectra (with two found peaks)

at 23 to 23.05 UTC and monomodal spectra afterwards. For this case study, PEAKO and Shupe_04 and Polyfit12 agree well

with the situation described in Kneifel et al. (2015) while MicroARSCL overestimates the number of peaks especially in the

turbulent boundary layer and near 4 km altitude.25

Appendix C: Case study from 7 February 2014, 23.75 - 24 UTC (test data set 2)

The second test data set of February 7, 2014 23.75 to 24 UTC is characterized by dendritic ice particles (Kneifel et al., 2015)

and a slanted fall streak feature extending from near 4 km to 1 km from 23.75 to 23.9 UTC (Fig. C1) with bimodal Doppler

spectra (Fig. C2 and Fig. C4). Ground-based in-situ observations report mostly small, open-structured aggregates (which are

later replaced by more compact spheroidal habits) as well as a small number of spherical probably rimed particles.30
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Figure A1. Like Fig. 4 but for 16 February 2014, 0.67 - 0.92 UTC in 0 - 4 km height.
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Figure A2. Like Fig. 5 but for 16 February 2014, 0.67 - 0.92 UTC in 0 - 4 km height.
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Figure A3. Like Fig. 6 but for the case study period on 16 February 2014, 0.66 - 0.92 UTC in 0 - 4 km altitude.
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Figure A4. Four example spectra selected from the case study on 16 February 2014, 0.63 - 0.92 UTC. Please note that the y axis scale is

different for each of the spectrum plots.
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Figure B1. Like Fig. 4 but for 21 February 2014, 23.01 - 23.25 UTC in 0.2 - 4 km height.
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Figure B2. Like Fig. 5 but for 21 February 2014, 23.01 - 23.25 UTC in 0.2 - 4 km height.
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Figure B3. Like Fig. 6 but for the case study period on 21 February 2014, 23.01 - 23.25 UTC in 0.2 - 4 km altitude.
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Figure B4. Three example spectra selected from the case study on 21 February 2014, 23.01 - 23.25 UTC. Please note that the y axis scale is

different for each of the spectrum plots.
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Figure C1. Like Fig. 4 but for 7 February 2014, 23.75 - 24 UTC in 0.2 - 4 km height.
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Figure C2. Like Fig. 5 but for 7 February 2014, 23.75 - 24 UTC in 0.2 - 4 km height.
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Figure C3. Like Fig. 6 but for the case study period on 7 February 2014, 23.75 - 24 UTC in 0.2 - 4 km altitude.
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Figure C4. Four example spectra picked from the case study on 7 February 2014, 23.75 - 24 UTC. Please note that the y axis scale is different

for each of the spectrum plots.
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